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1.Understanding in music, business, and science maybe

2.Traditional accounts and recent work

3.The mechanics of understanding?

4.Kolmogorov complexity and compression

5.Subjects

6.Handwaving
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“The accompanying diagram will aid us in understanding this rather perplexing 
subject.” [Darwin, Origin, chapter 4]
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“It’s human DNA!”
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“But besides this practical concern, 
there is a second basic motivation for 
the scientific quest, namely, man's 
insatiable intellectual curiosity, his 
deep concern to know the world he 
lives in, and to explain, and thus to 
understand, the unending flow of 
phenomena it presents to him.”

[Carl Hempel 1962] 
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there is a second basic motivation for 
the scientific quest, namely, man's 
insatiable intellectual curiosity, his 
deep concern to know the world he 
lives in, and to explain, and thus to 
understand, the unending flow of 
phenomena it presents to him.”

[Carl Hempel 1962] 

“Information is not knowledge.
Knowledge is not wisdom.
Wisdom is not truth.”

[Zappa 1979]

“Data is not information, information is 
not knowledge, knowledge is not 
wisdom, wisdom is not truth.” 

[Robert Royar 1994]

Hempel, Carl G. "Explanation in Science and History," in Frontiers of Science 
and Philosophy, ed. R.C. Colodny, 1962, pp. 9- 19. Pittsburgh: The University of 
Pittsburgh Press.  

Royar, Robert. “New Horizons, Clouded Vistas.” Computers and Composition 11, 
no. 2 (January 1, 1994): 93–105. 

Zappa, Frank. “Packard Goose”. 1979. Joe’s Garage: Acts I, II & III. FZ Records.
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The missing link in the 
DIKW pyramid

Understanding?

If we approach this from 
the machine learning 
perspective, we might 
get a better idea of 
human scientific 
understanding

{
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Since Aristotle, understanding has been seen as based on causal explanation  
(cf. de Regt 2004 for summaries)

Hempel and the logical empiricists rejected subjective elements such as feelings of 
confidence or enlightenment

• “Empathic insight and subjective understanding provide no warrant of objective validity, no 
basis for the systematic prediction or explanation of phenomena…” [Hempel 1965, 163]

The objectivist approach requires ultimately some pragmatist notion:

• Of prediction (Trout 2002, Wittgenstein 1953 §152)

• Of explanation (van Fraassen 1980)

The utility of causal accounts ultimately constitutes understanding.

Subjectivist or phenomenological accounts of understanding are merely psychologistic on 
this approach.
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Traditional accounts of understanding

Van Fraassen, Bas C. The ScienRfic Image. Oxford: Clarendon Press, 1980. 
Hempel, Carl G. Aspects of ScienRfic ExplanaRon, and Other Essays in the Philosophy of Science. New York: The Free Press, 1965. 
Regt, Henk W. de. “Discussion Note: Making Sense of Understanding.” Philosophy of Science 71, no. 1 (January 1, 2004): 98–109.  
Trout, J. D. “Sciensfic Explanason and the Sense of Understanding.” Philosophy of Science 69, no. 2 (June 1, 2002): 212–33. 
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Recent work on understanding

De Regt, Henk W. Understanding ScienRfic Understanding. Oxford Studies in Philosophy of Science. Oxford University Press, 2017.  
De Regt, Henk W., Sabine Leonelli, and Kai Eigner. ScienRfic Understanding: Philosophical PerspecRves. Pivsburgh: University of 
Pivsburgh Press, 2009.

A scientific theory T (in one or more 
of its representations) is intelligible 
for scientists (in context C) if they can 
recognize qualitatively characteristic 
consequences of T without 
performing exact calculations. 
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The mechanism of understanding is not generally considered in epistemology

• Because we do not have the requisite neurobiological or neuropsychological 
knowledge yet (we do not understand understanding)

• But also because there are objections to subjectivism in psychological approaches 
(I concur)

How to approach this?

One domain in which such matters are dealt with mechanically (i.e., mechanisms are 
sought) is machine learning (ML, a subset of AI).

• The mechanisms can be opaque “black boxes” in their operation (deep learning)

• There is no subjectivity required (but there is a “subject”; that is, a learning system)

I will attempt to generalise ML and algorithmic information theoretic tools to apply to 
this problem of understanding within knowing systems
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In physics there is a distinction between two kinds of description:

• Kinematics: description of motions without consideration of forces

• Dynamics: the relations between forces and motion

In brief: phenomenal accounts and causal explanations.

We can explore the problem of understanding in knowing systems as the shift from 
kinematic accounts (what the behaviour of the system that understands is) to dynamic 
explanations (what forces the behaviour of the understanding system)

• Of systems that are the subject of understanding

• Of systems that understand

These coincide: as we move from kinematic descriptions of things to dynamic explanations  
of knowing systems, we also move from considering knowledge to considering 
understanding
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Knowing systems have a limit to their working memory under realistic assumptions

Knowing systems also have to deal with noisy data and uncertainty

Once the scale of the data set exceeds the capacity of the system’s cognitive limits 
[working memory, processing power] pattern recognition must be off-sourced

• E.g., regression and other statistical analyses

• Machine Learning classifications (ANNs)

• Distance analyses (Hamming, Manhattan)

Less memory and cognitive resources are 
required to retrieve and interpret patterns

A pattern therefore has information the data 
does not

[Here, information is a property of the state 
of a knowing system]
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As any ML system is a Turing machine, it follows that, even when we do not know 
it, there is an algorithm A that generates the output pattern P

The information content of P is therefore the complexity of A, and the data set

• If P is lossy, then its information content is lower in complexity than the data 
set

• If P is lossless, then the complexity of A equals the complexity of P, by defn 

So A is a compression algorithm. By analogy, when we generate a pattern (such 
as a regression curve) from a large or noisy data set, we are compressing the data 
to generate information, and from that information we can fairly say we know 
the domain the data set samples or represents.

The complexity of P is specified in Algorithmic Information Theory (AIT) as the 
length (in bits) of the shortest program that generates P.

>12

Machine learning and understanding



John S Wilkins john@wilkins.id.au

AIT is based on the work of Andrey Kolmogorov (1903–1987) and Ray Solomonov 
(1926–2009)

>13

Kolmogorov compressed



John S Wilkins john@wilkins.id.au

AIT is based on the work of Andrey Kolmogorov (1903–1987) and Ray Solomonov 
(1926–2009)

Kolmogorov Complexity (K) is the length of the shortest program in a language L 
that generates a string w

>13

Kolmogorov compressed



John S Wilkins john@wilkins.id.au

AIT is based on the work of Andrey Kolmogorov (1903–1987) and Ray Solomonov 
(1926–2009)

Kolmogorov Complexity (K) is the length of the shortest program in a language L 
that generates a string w

• The most complex string in L is a fully random string

>13

Kolmogorov compressed



John S Wilkins john@wilkins.id.au

AIT is based on the work of Andrey Kolmogorov (1903–1987) and Ray Solomonov 
(1926–2009)

Kolmogorov Complexity (K) is the length of the shortest program in a language L 
that generates a string w

• The most complex string in L is a fully random string

• A fully random string is incompressible

>13

Kolmogorov compressed



John S Wilkins john@wilkins.id.au

AIT is based on the work of Andrey Kolmogorov (1903–1987) and Ray Solomonov 
(1926–2009)

Kolmogorov Complexity (K) is the length of the shortest program in a language L 
that generates a string w

• The most complex string in L is a fully random string

• A fully random string is incompressible

• The working memory of a ML system is thus the largest random string that 
it can hold in memory while applying functions to it

>13

Kolmogorov compressed



John S Wilkins john@wilkins.id.au

AIT is based on the work of Andrey Kolmogorov (1903–1987) and Ray Solomonov 
(1926–2009)

Kolmogorov Complexity (K) is the length of the shortest program in a language L 
that generates a string w

• The most complex string in L is a fully random string

• A fully random string is incompressible

• The working memory of a ML system is thus the largest random string that 
it can hold in memory while applying functions to it

Thus K gives the complexity of a string (of digits, or other structured data)

>13

Kolmogorov compressed



John S Wilkins john@wilkins.id.au

AIT is based on the work of Andrey Kolmogorov (1903–1987) and Ray Solomonov 
(1926–2009)

Kolmogorov Complexity (K) is the length of the shortest program in a language L 
that generates a string w

• The most complex string in L is a fully random string

• A fully random string is incompressible

• The working memory of a ML system is thus the largest random string that 
it can hold in memory while applying functions to it

Thus K gives the complexity of a string (of digits, or other structured data)

If we conceive of ourselves as knowing systems analogous to ML systems, the 
information in data is thus the K “program” in our cognitive processes
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Li, Ming, and Paul Vitányi. An IntroducRon to Kolmogorov Complexity and Its ApplicaRons. 4th ed. Texts in Computer Science. Springer Internasonal 
Publishing, 2019. 

Grünwald, Peter, and Paul M. B. Vitányi. “Shannon Informason and Kolmogorov Complexity.” CoRR cs.IT/0410002 (2004).  
Wallace, C. S., and D. L. Dowe. “Minimum Message Length and Kolmogorov Complexity.” The Computer Journal 42, no. 4 (January 1, 1999): 270–83.
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– it is not subjective, as the experience felt by the knower is not relevant for understanding the 
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[Nor is this an objectivist account, as it does not depend upon a truth operator]

Complexity of the information is inversely related to the informativeness for a limited knowing 
system

• Put another way, the tractability of inferences increases as complexity reduces

[Inversely, tractability reduces as data complexity increases, unless it is compressible]

• Compression of data to information is a lossy process; the structure/pattern in the data is 
simplified through regression, etc.

• The function of this information is to set the expectations of the knowing system  
[but that’s another talk; contrastive explanation is why]

• In short: the information derived from the data sets the prior probabilities for future data, 
highlighting anomalies and points of interest
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So, how might this analogy work in the arena of science? Scientists seek to understand the 
universe, of course, as Hempel said.

• But what does “scientists” refer to? What are the knowing systems in science?

• particular scientists

• disciplines and sub disciplines

• research groups

I would take this approach to apply equally well to both individual and collective knowing 
systems.

We can say that Professor X understands some phenomenon, or that Discipline Δ 
understands some phenomenon independently (individuals can fail to understand what 
the discipline does, and vice versa)

[Does this mean we have actual Turing machines in our heads? No, it’s an abstract way 
to consider the problem (just as neurones are not artificial neurones or v.v.)]
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• Gas laws (Boyles’ Law, Charles’ Law, Gay-Lussac’s Law, Avogadro’s Law, etc.) leading 
to the Ideal Gas Law, to van der Waals’ equation

• Periodic table construction by empirical lab work, followed first by valency, then 
electron shell, then quantum mechanical causal accounts

• Mendelian genetics (phenomenal) through to population genetics (kinematic), 
through to molecular genetics (dynamic)

• Arguably: observational to theoretical ecology, through to ecological 
thermodynamics and “ecological orbits” (Haynie 2001, Ginsburg and Colyvan 2004)

• Tectonic drift theory (Oreskes and le Grand 2003)

• &c.
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consequences in the fewest terms. Understanding is thus:

• Empirical adequacy (van Fraassen)
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• Causal explanation

which are pretty much de Regt’s three criteria restated.

The initial epistemic activities of measurement, analysis and kinematic 
generalisation involve compression so that we may comprehend the things needing 
explanation

• Compression of data is a kind of pattern matching, on the basis of which ampliative 
inferences rest.

• Big data is not, ipso facto, a good thing
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